

- Semiconductor basics
- pn junction
- Solar cell operation
- Design of silicon solar cell

- Allowed energy bands
- Valence and conduction band
- Fermi level

- Allowed energy bands
- Valence and conduction band
- Fermi level

Effect of temperature

Effect of doping

 Absorption of light depends on the energy of the photon (wavelength)

$$E = \frac{hc}{\lambda}$$

$$E(eV) = \frac{1.24}{\lambda(\mu m)}$$

 Absorption of light depends on the energy of the photon (wavelength)

$$E = \frac{hc}{\lambda}$$

$$E(eV) = \frac{1.24}{\lambda(\mu m)}$$

 Absorption of light depends on the energy of the photon (wavelength)

$$E = \frac{hc}{\lambda}$$

$$E(eV) = \frac{1.24}{\lambda(\mu m)}$$

• **Absorption coefficient** [cm⁻¹]: the distance into the material at which the light drops to about 1/e of its original intensity

$$I = I_o e^{-\alpha x}$$

$$E = \frac{hc}{\lambda}$$

$$E(eV) = \frac{1.24}{\lambda(\mu m)}$$

 α is the absorption coefficient typically in cm⁻¹ I_0 is the light intensity at the top surface.

 Absorption coefficient [cm-1]: the distance into the material at which the light drops to about 1/e of its original intensity

$$I = I_o e^{-\alpha x}$$

 α is the absorption coefficient typically in cm⁻¹ I_0 is the light intensity at the top surface.

 Absorption coefficient [cm-1]: the distance into the material at which the light drops to about 1/e of its original intensity

$$I = I_o e^{-\alpha x}$$

 α is the absorption coefficient typically in cm⁻¹ I_0 is the light intensity at the top surface.

PV FUNDAMENTALS

 The generation rate gives the number of electrons generated at each point in the device due to the absorption of photons.

 α is the absorption coefficient typically in cm⁻¹ N_0 = photon flux at the surface (photons/unit-area/sec)

PV FUNDAMENTALS

Recombination may occur through...

 Radiative recombination - an electron directly combines with a hole in the conduction band and releases a photon

Recombination may occur through...

 Shockley-Read-Hall recombination — 2-step process: an electron is trapped in a defect level

Recombination may occur through...

 Auger recombination – similar to radiative recombination but energy release through a third carrier

Recombination is characterized by...

- Recombination rate
- Minority carrier lifetime how long a carrier is likely to stay around for before recombining
- Diffusion length average distance a carrier can move from point of generation until it recombines

$$au = \frac{\Delta n}{R}$$
 $L = \sqrt{D\tau}$

Imaginary Boundary

Basic steps:

- the generation of light-generated carriers;
- the collection of the light-generated carries to generate a current;
- the generation of a voltage across the solar cell; and
- the dissipation of power in the load and in parasitic resistances.

Basic steps:

the generation of light-generated carriers

Basic steps:

the generation of light-generated carriers

Basic steps:

the collection of the carriers

Basic steps:

the collection of the carriers

Quantum efficiency

Ratio of the number of carriers collected to the number of photons of a given energy incident

Solar cell operation

Quantum efficiency

Spectral response

Ratio of the current generated by the solar cell to the power incident on the solar cell

Spectral Response (SR) is measured

Quantum Efficiency (QE) is calculated from SR:

$$SR = \frac{q\lambda}{hc} QE$$

Solar cell parameters

IV characteristic

= diode + light generated current

Solar cell parameters

Solar cell parameters

Solar cell parameters

Solar cell parameters

Solar cell parameters

IV characteristic: Short Circuit Current (I_{sc})

Solar cell parameters

IV characteristic: Short Circuit Current (I_{sc})

- Area of the solar cell (common to use J_{sc} in mA/cm²)
- Incident flux (i.e. number of photons)
- Spectrum incident light
- Optical properties of the solar cell
- Collection probability, e.g. diffusion length

$$J_{SC} = qG(L_n + L_p)$$

Solar cell parameters

IV characteristic: Open circuit voltage (V_{oc})

Solar cell parameters

IV characteristic: Maximum power

Solar cell parameters

IV characteristic: Fill factor (FF)

Solar cell parameters

Efficiency (η) is the fraction of incident power which is converted to electricity

$$P_{max} = V_{OC}I_{SC}FF$$

$$\eta = \frac{V_{OC}I_{SC}FF}{P_{in}}$$

Solar cell parameters

Resistive effects

- Characteristic resistance
- Parasitic resistance

Solar cell parameters

Resistive effects

Characteristic resistance

Maximum power transfer is $R_{LOAD} = R_{CH}$

$$R_{CH} = \frac{V_{MP}}{I_{MP}} = \frac{V_{OC}}{I_{SC}}$$

Solar cell parameters

Resistive effects

- Characteristic resistance
- Parasitic resistance
 - Series resistance
 - Shunt resistance

Solar cell parameters

Resistive effects

- Characteristic resistance
- Parasitic resistance
 - Series resistance
 - Shunt resistance

$$I = I_L - I_0 \exp\left[\frac{q(V - IR_S)}{nkT}\right] - \frac{V + IR_S}{R_{SH}}$$

Effect of the series resistance

$$FF' = FF(1 - r_S)$$
 with $r_S = \frac{R_S}{R_{CH}}$

Effect of the shunt resistance

$$FF_{SH} = FF_0 \left(1 - \frac{1}{r_{SH}}\right)$$
 with $r_{SH} = \frac{R_{SH}}{R_{GH}}$

Effect of irradiation

Effect of temperature

Optical losses - light which could have generated an electron-hole pair, but does not, because the light is reflected from the front surface, or because it is not absorbed in the solar cell.

- Optical losses light which could have generated an electron-hole pair, but does not, because the light is reflected from the front surface, or because it is not absorbed in the solar cell.
- Top contact shading
- Top surface reflection
- Not enought optical path for photon absorption

Optical losses

Reduce **shading** from top contacts

Optical losses

Reduce shading from top contacts

Optical losses

Reduce shading from top contacts

May increase series resistance

Other emitter contact concepts

becoming fashionable (burried or back contacts)

Optical losses

Anti-reflective coating

$$n_1 d = \frac{\lambda}{4}$$

$$R = \left(\frac{n_1^2 - n_0 n_2}{n_1^2 + n_0 n_2}\right)^2$$

Optical losses

Anti-reflective coating

Optical losses

Surface texturing

Optical losses

Surface **texturing**

Single crystal: Random pyramids, by etching

Multi crystal: texturing by photolithography

Single crystal: Inverted pyramids, by etching

Multi crystal: texturing by macroporous silicon

Optical losses

Light trapping: increase optical length

Optical losses

Light trapping: increase optical length

When a rear reflectors is added, the optical path length is twice the physical device thickness.

Optical losses

Light trapping: increase optical length

Surface texturing increases the path length but light escapes after two passes through the solar cell.

Optical losses

Light trapping: increase optical length

Front and rear surface texturing can trap light for multiple passes due to total internal reflection.

Optical losses

Light trapping: increase optical length

Snell's law of refraction: $n_1 \sin \theta_1 = n_2 \sin \theta_2$

Optical losses

In summary:

- Reduce front contact coverage
- Anti-reflective coating
- Surface texturing
- Light trapping

Recombination losses

Optimal conditions:

- the carrier must be generated within a diffusion length of the junction;
- the carrier must be generated closer to the junction than to *hazardous* recombination sites (unpassivated surface, grain boundary,...)

Recombination losses

Design of silicon solar cells

Recombination losses:

Surface passivation

 Reducing the number of dangling bonds by growing a SiO₂ or SiN thin film on the surface (also for anti-reflection coating; notice that it is an electric insulator)

Increasing doping, creating a repelling field

(decreases diffusion length thus not suitable for charge collection region; useful closer to contacts, e.g. Back Surface Field - BSF)

Design of silicon solar cells

Recombination losses:

Surface passivation

- How to make a practical photovoltaic module
- Other (non-silicon) technologies

And check http://pvcdrom.pveducation.org/